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On the basis of the seminal studies of Hakad#drid and CHO units
Burgerlc2¢ intercellular interactions involving complementary “
carbohydrate motifs are now recognized to be multivalent in nature,
highly substrate specific, and associated with a number of key
biological processesTo date, study of this important recognition - w
process has exploited the multivalent comporiemtith, for
example, synthetic micelles, monolayers, and glyconanoparticles
playing a key rol¢.Nevertheless, the molecular detail of these weak, (a) (b)
sometimes C& dependent, interactions remains unclear, neces- - e H *3 H 2 H 1 H / N,
sitating the need for models to probe the nature of this phenomenon Z_‘_‘X‘O( N ng mg mxg m\g
in terms of individual carbohydrate (CHO) motifs. o/
Our proposal was to ligate carbohydrates onto a conformationally 1
defined helical scaffold to allow carbohydratearbohydrate in- Figure 1. (a) Schematig-peptide 12-helical scaffold; (b) helix periodicity
teractions to be studied within a controlled andnmultvalent wheel and glycosylation sites (blue spheres) for hexapeftide

environment. We propose to evaluate these interactions directly by ) . . -
spectroscopic methods, which may also be associated within (angS¢"eme 1. Synthesis of Glycosylated Pyrrolidine -Amino Acid

reportable via) the scaffold core. In this way, complementary (and /“"'\e /“y"\e
sensitive) analytical methods could be employed to study this 0. COgt PN UNH - COEt Ph™ “NH ;\\COzB" .
phenomenon. A suitable core was reported by Gelmvelmose ﬁ _ac " _d49 Ve
mixed cyclopentyl/pyrrolidine “foldamers” display a 12-helical N N go C O
secondary structure (i.e., 12-membered H-bonded risgD@)— , 3 (HCI sal) 42 Z~(OAc),
HN(i + 3)*) in aqueous solution. Positioning the CHO moieties 7z 6a-d (see text)
on a single face of the foldamer scaffold offers an efficient design )M\e Me
that maximizes the opportunity for intrascaffold CHO-based PR™ "NH  COBn AcO N COA
interactions. To pursue this strategy we have targeted a hexapeptideacoy, ., . i Ae© o Z:)
1, which is selectively glycosylated at+ 1,i +3, andi +4 on the S0, rea) a0 N S0,
basis of a predicted 12-helical pattern (Figure 1(a) and (b)). © Ad O

Peptidel is accessible via the requisite enantiomerically pure | crountbased on (HCIsalt

¢ Glucosamine
d Lactose

Galactose

6
a
b | Glucose

glycosylated pyrrolidinérans--amino acid, with peptide assembly

exploiting cyclopenty|3-amino acids as spacers. In this paper we 2 Conditions: (a) (R))-a-methyl benzylamine, ACOH, EtOH, 4 h: (b)
describe the synthesis and characterization of the first glycosylatednacNBH, 75 °C, 16 h; (c) 4 M HCI in dioxane, EtOAc, 25% (3 steps):
foldamer which presents a carbohydrate surface which positions (d) LiOH-H,0, THF/MeOH/HO, 0°C; (e) BnBr, CsCOs, DMF, 86% (2
and maintains model CHO units in close proximity to one andther. OS(t:GPYS%;/(f)ZTFA, Cl_"iCr:ziég) &FESH§=CHCH35020L ||3|PEA. %%%'2'23

Our synthetic strategy centers on the enantiomerically pure . Y38—62)£A '?$eﬁ/)|’|-(|c)linnéiox2n2' O%ﬁeigzzgg?éafc%ﬁdﬂmom omp
pyrrolidine f-amino acid monomers (e.g7) glycosylated via a 541, gg9 (2 steps). T ’ ’ ’
sulfonamide-baséd linker (Scheme 1). Suitably protecténs
3-aminopyrrolidine-4-carboxylatwas prepared frofi-keto ester — completion of the glycosylated monomer synthesis was exemplified
27 utilizing a diastereoselective reductive amination/crystallization ith B-galactose-based monona via amino acid deprotection
procedure as reported by Gellnﬁrﬁ?rotecting group manipulations to give theO-acetyl protected galactos-amino acid7, which
and sulfonamide formation provided access to pyrrolidimeady has been used as a model to illustrate the foldamer-based concept
for carbohydrate attachment through cross metathesis (CM). associated with a triglycosylated hexapeptide

Optimal CM conQ|t|on§ requ.lred crotylcrotyl containing com- The peptide coupling strategy employed the glycosylated and
ponents, and reactions involvigand four5-O-crotyl carbohy- cyclopentyl derivative§ and8 (and10), respectively (Scheme 2).
drates partnerSa, 5b, 5¢, and5d were employed. The latter were v jnitially used a solid-phase synthesis strategy, but use of
based on galactose, glucose, glucosamine, and lactose, respectlvel)étandard Fmoc protocols (with a HATU/HOBYNMM coupling
and this led to the glycosylated monomées-d in moderate yield. strategy) on Rink amide resin failed. This was because the hindered
(i + 3)/(i + 4) coupling step involving two glycosylated unitg (

T University of Bristol. . . .
s Astrazeneca, Silk Road Business Park. + 9 to generatell) did not go to completion. To overcome this
* AstraZeneca, Mereside. problem, a convergent solution phase approach based on a more
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Scheme 2. Synthesis of Glycosylated Hexapeptides 13 and 142 30000
FmocHN OH HN OH .
la 20000

——FPepsde 13 Methanal
——FPepsde 14 Methanal

H -
FmocHN: N OH s 1smn o
qumorc m m i " ,§ —Pepae 14 Wster
X 9 "‘1 10000
7 ° /) c\ 10 ° S
E 00
H H H H
FmocHN: N- N OH FmocHN: N N NH,
" ld-g 12
-5000
i i+ 2 i+3 i+4 i+5
@ H H H H H oo
PhCONHmH n H H Hzﬁn/NH2 180 200 210 0 220 240 280 280
Wavelength, nm
H o o o [¢) o T o ) )
B - Figure 2. CD data for hexapeptides3 and 14 in methanol and water.
X=NSO,(CH,),0-p-Gal(OAc), ——= X = NSO,(CH;),0-p-Gal Data have been normalized for concentration and number of residues.
13 14
aConditions: (a) CIC@BU, NMM, —10°C, 71%; (b) CICQ@Bu, NMM, Acknowledgment. We thank Professor Derek Woolfson and

—10°C, 43%; (c) CIC@Bu, NMM, —10 °C, 61%; (d) 20% piperidine in Dr Maxim Ryadnov for advice and access to CD facilities and

DMF; (e) CICGyBu, NMM, —10°C, 74% (2 steps); (f) 20% piperidine in  AstraZeneca, EPSRC, and the Royal Thai Government for financial
DMF; (g) BzCl, EgN, 0°C, 80%; (h) MeOH/NH, 88%. Nonadjacent NOEs support

observed for peptides3 and14in MeOH (see text) are shown with double
headed arrows. NMM= N-methylmorpholine. Supporting Information Available: Experimental details. This
material is available free of charge via the Internet at http://pubs.acs.org.
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In conclusion, we have demonstrated a model system amenable Eéﬁﬁ%ﬁ?”snﬁ?_ﬂ; Ségféd%f%v?geh";ﬁ9°§ef‘§b§§9fdf%‘;{‘; ng. R P

to the study of carbohydratearbohydrate interactions, which (6) The lactoselactose interaction has been reported to stabilize a peptide
. . array but only in hydrophobic solvents (polyfluorinated alcohols) and not
complements multivalency-based approaches. Glycosylation of the in buffer. Hasegawa, T.; Sasaki, Chem. Commur2003 978.

foldamer scaffold does not perturb the helical structure necessary (7) Blake, J.; Wilson, C. D.; Rapoport, H. Am. Chem. S04.964 86, 5293.
L Lo .. (8) Of a range of substrates tested, cretylotyl partners led to less alkene
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triglycosylated peptide.4 also serves as an important control for (%) In total, three G(i)_C.H(i + 2) and four iﬁ“ﬂ;;’:“?s(gg 2 NOES
future studies. Our next objective is to incorporate carbohydrate Information). All possible g—i(i)p—NH(i + 1) NOEs were oggen/ec?.

moieties that are associated with an established and biologically (10) %?S;iséﬁ”gf""liihv\mﬁ éﬁgfl?ﬁ’;m 0.4 1o 100 MM of C&) showed no

significant carbohydratecarbohydrate interaction to study this effect (by CD) on the secondary structure of pepticie and we infer
process in comparative isolation and to detail the nature of the that no interactions are associated with this simple Gal-based model.
mechanisms involved. JA0614565
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